STRESS WAVES IN A COMPOSITE SEMIINFINITE ROD

V. M. Zelenev and V. S. Polenov UDC 539.3

We consider the problem of the propagation of stress waves in a rod composed of a viscoelastic por-
tion of finite length and a semiinfinite elastic part when an impulsive load is applied to the end of the rod.

The hereditary properties of the viscoelastic part of the rod are characterized by Yu. N. Rabotnov's
kernel and the model of a standard linear body.

Methods of the theory of functions of a complex variable are used to obtain solutions in the form of a
sum of stationary and nonstationary parts.

As the kernels in the Boltzmann-Volterra integral relations in the hereditary theory of elasticity the
most effective functions from a theoretical and practical standpoint are the fractional-exponential func-
tions due to Yu. N. Rabotnov [1]. The possibility of using such functions in dynamic problems of the theory
of linear visco-elasticity was demonstrated in [2].

Of particular interest is the study of stress waves in a rod, the hereditary behavior of which is de-
fined by the 3~~function.

Problems concerned with the propagation of stress waves in semiinfinite homogeneous rods have been
the subject of study by many authors [3~6].

In this paper we study the stresses in a rod consisting of two parts: a viscoelastic part whose he-
reditary properties may be described by Yu. N. Rabotnov's relaxation kernel and an elastic part;the stress
waves arise through application of a sinusoidal impulsive load to the end of the rod. The solutions are ob-
tained in the form of a sum of stationary and nonstationary parts.

1. We take the x axis along the rod axis, with x€ [0, ]] for the viscoelastic part of the rod and x ¢
[1, =] for the elastic part. To the end of the rod we apply the sinusoidal impulsive load gyH(t) sinwt, where
H (t) is the Heaviside unit function.

The resulting stress wave in the viscoelastic medium is reflected and refracted at the boundary x=]
separating the parts of the rod. We consider the behavior of the reflected and refracted waves.

The equation of motion has the form
B, x =0, (=12 (1.1)

Here u=u(x, t) is the longitudinal displacement of points of the rod, P; is the density, Ej is the mod-
ulus of elasticity of the corresponding medium, the subscript j=1 refers to the viscoelastic part and j=2
to the elastic part; summation by repeated indices is not used here.

The conditions at the junction (x=]) and at the boundary (x=0) are

o (z, £) + 0, (z, t) = 0 (z, t), utu =u, =1 (1.2}
0 = —d,H (1) sin ot, z =10

The solutions of Eq. (1.1) for the displacements due to the advancing wave U, the wave U, reflected
in the viscoelastic part, and the wave U, refracted into the elastic part may be written in Laplace space in
the form

= Cexp(— k), Uj=Cjexp (Fk;x)
U = Cexp(— k) 1= j ws
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Here C, C;, C, are coefficients, which play the role of amplitudes, and ky, ky are wave numbers. The
plus and minus signs refer to the relected and refracted waves, respectively.

In the Laplace space, for the junction and boundary conditions (1.2), we have
@)+ =0k U+tU="U, z=1
o (p) = —0 (7 + o)L, =0 (1.4)
Here p is the complex parameter of the Laplace transform.

Taking note of the conditions (1.4), we may readily determine C, Cy, and C, from the expressions
(1.3). Recalling the expression for the stress in terms of the displacement

sj(p=EU;x (=12 (1.5)
and knowing C, Cj, and C,, we obtain

0y (p) = A (Eyky — Esksy) exp [k (z — 21)]
0y (p) = —2AEzk, exp [—kyl — Ky (z — 1)) (1.6)
A = oo [(p* + ©°) (E.k; + Euhy)]-t

Here E; and E; are moduli of elasticity in complex form.

The wave numbers k; and ky in complex form may be expressed in terms of the modulus of elasticity
of the corresponding media

k? = pp®E, Y, ky? = pop*Ey~t (1.7)

2. Let the hereditary properties of the viscoelastic part of the rod be described by Yu. N. Rabotnov's
relaxation kernel, which in Laplace space has the form

Rp)=1+(pra 1" <1< (2.1)

where T, is the relaxation time. Taking Eq. (2.1) into account, the expressions for Ej and kj, in accord
with Volterra's principle, have the form

Ey=Eo[1 —veR(P)l, Ey=Ewy ve= By — Eo1) | Ey (2.2)
by=pCH L — v R (D)™, ky=Chp
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Here E., E,; are the nonrelaxed modulus values and Ey, is the relaxed modulus value; C,,o]- =
(E o /pj)i/2 are the elastic wave speeds in the corresponding media.

The original functions ¢y(x, t} and gy (x, t) may be determined from the Mellin-Fourier inversion
formula
Moo

1
0 (¥, 1) = 5= R sj(pyer'dp  (i=1,2) (2.3)

A—ico

Substituting the expressions (1.6) into Eg. (2.3) and taking note of the relations (2.1) and (2.2), we
obtain

A-f-ico
51 (@, 1) =5 g Ay (A" F — 1) exp fo(x — 21) -+ pt} dp
A—ico
Atico
5 (@, 1) = o2 S Agexp {—al-— Cp(z —20) + pt}dp (2.4)
A—icc

A=(p"+a) (p"+a)t, Ay =ol(p*+o®)(d + AR
F = CoozEeol /CcolEoozq o = ct:nllpA'—l/=

For y= 1 the integrand functions in Egs. (2.4) have a pole pp ==+ iw of the first order, and branch
points at p=0 and p=— (the points p=(—g,) 1/ Y, p= (—az)i/')/ are not branch points since for y= 1 they do
not fall on the first sheet of the Riemann surface |arg p|<7).

We select a closed contour of integration with a cut along the negative real axis. Using the funda-
mental theorem on residues and Jordan's lemma, we obtain {7]

O1a (2, 1) = [LS QG (z,1,5) 038] H (ty) + %res oy (px) €7 (2.5)

k14
]
o

(21 = — [22§ 06 (0,1, 95 () + Sires s (p) ¥

Q=0+, fh=t+@—20)Ch, t,=t—ICoh—(x—10)Ch
The functions Gy and G, are defined as follows:

G, = Byexp [~ (o; -+ st)] {1 — F?R,] sin B, — 2FR ': sin ¢ cos B} (2.6)
Gy = B, exp (@ — st) {1 4+ FRhcos @] sin B, + FR ' sin @ cos Py}

The quantities appearing in the functions Gy and G, have the form

By =[1+2FR"cosqg + F2R,]™, oy =h (z—2])cos g
Ry=R\Ry oy =hylcosg+ Cops (x— 1), By = hy(z—2l)sin g
Ba=hylsing, hy=Clis(R,/ Ry, P=(P1 — P2)/2
Ry = {(az* 4 2a,5vcos § -+ s¥yh,  tgq,=(a, - s*cosd)Ls¥sin §
ay=(1—v)7, ay=1t, S=may, n=1,2

Here H (t;) and H (t,) are Heaviside unit functions.

Putting y=1 into the integrals (2.4), we obtain the stresses in the composite rod, the dynamic behav-
ior of whose viscoelastic part is described by the model of a standard linear body. In this case the inte-
grand expressions in Egs. (2.4) have the first-order poles pi =+ iw and the branch points p==—g;, p=—a5.
Choosing a closed contour with a cut on the negative real axis from (=g,) to (~g,), we obtain

o = [2-§ 96, (2, 1, 5)exp (— s1)ds] B (1) + Sirescy (i) ¢ (2.7)

ay K

o =~ Z{ 06 1) oxp (G (o — s — s a5} (1) 4 Shrescy ()

s
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The functions Gy and G, may be written in the form

Gy = B, {(1 — F?h,)sin, — Zthll' cosy}, hy=(s —ay)(as —s)*
Gy = B, (h,"F cos 9y +sinvpy), ¥ = Clyshy" (z —20) (2.8)
Py = Coyslhy™, By =1+ Fhy)t

We remark that the expressions (2.7) cannot be obtained from Egs. (2.5) by letting v— 1.

Each of the expressions (2.5) and (2.7) is a sum of stationary and nonstationary parts of the stresses
for the reflected and refracted waves.

The nonstationary parts are connected with relaxational processes taking place in the dynamical sys-
tem. In the case of Yu. N. Rabotnov's kernel, the stresses oy, for the reflected and gy for the refracted
waves, hamely, the second terms in the expressions (2.5), can be written in the form

;4 = A;sin (of £-0; 4-%;) =12 (2.9
The amplitudes of the corresponding waves may be determined by the following relations:
Ay = Yy0uq, [0+ (RF? — )]exp [E (2 — 20)], E=CohoR " sin ¥
Ay = ooqyexp (—E), ¢ = (1 3 RF* 4- 2R"F cos -‘g-)"

b=2R"Fsin ¥

(2.10)

The quantities appearing in Eqgs. (2.10) have the form

tgn, = b(RF? — 1), tgx, =101+ R"cosp/2), tgv=dd,!
B=(z—20)d, B,=Ild+Cho(x—1), d=CloR"cosvp/2
R = (n® + n?) 1 (& + &), dy = (myny — nymy)?,  dy = nyng — my?
ng=a;+o'cosd/2, m =0Ysind/2, E= C;llmR""sin'tp/2 (k=1;2)

In the case of the standard linear body the nonstationary parts, namely, the second terms of the ex~
pressions (2.7) for the reflected and refracted waves, assume the form

Sp=D;sin(@t +68;-+%) (¢=1,2%i=34 (2.11)
For the amplitude quantities Dj, we have
Dy =505 [(rF? — 1)* 4 rTV2exp [E, (z — 20)] (2.12)

Dy=0ogaexp(—Edd),  qa= (1 4+ rF* +2r':F cos gy / 2)7
E = Coor2singy /2, ry=2r'hFsing,/2

The phase shifts (g; + x;) in Egs. (2.11) may be calculated from the formulas

O, =Mz —2D, O=24l+Ch(x—0Do, A= Coqoricos ps/2
tg %y = Ag 8in @3/2, tg ys = Ag sin 4/2, Ay = 2r%F (rF* — 1)-1
tg g3 = 0 (a2 — ap) (2,0 + 0% r = [(a® + 0?) (a® + o)~
hg==re F (1 4-r"* F cos @4/3)!

By way of example, we considered the behavior of the reflected wave with [ =1, and the refracted
wave on the part x€[1; 2]. Corresponding values of the fime t were determined by the Heaviside functions
H(t;)) and H (t;). Calculations were made on an electronic digital computer. In these computations we used
the following numerical values for the initial parameters:

a=05 a=1 I=1, o=1, E, =064 Eg =1, En=0.32

In Fig. 1 we have drawn, as a function of x%=x (C,, ;7 )~! t?=t7,"1=2.5), graphs of the quantity ¢;°=
010-0"1 for the stationary (solid curves) and nonstationary (dashed curves) parts of the stress arising in the
viscoelastic part of the rod. The labels on the curves indicate values of the fractional parameter vy, which
influences the stress distribution as a function of x°.

Figures 2 and 3 illustrate the behavior of the refracted wave ¢,°=0y0,"! as a function of x° (t°=2.25).
The stationary part of the refracted wave (Fig. 2) has the same sign over the length of rod studied at the
time that the nonstationary part (Fig. 3) is changing its sign. As the fractional parameter y decreases, the
stresses increase more rapidly in absolute value.
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The behavior of the nonstationary part oy° as a function of 1*(x'=2) is shown in Fig. 4. The dashed
line indicates the instant of wave arrival at the point x°=2. From Fig. 4 it is evident that at the instant of
wave arrival the stresses are larger for smaller values of the parameter 7.

Thus the stresses arising in the viscoelastic part of the rod reflect the essential influence of the
fractional parameter v on the stress in the elastic part of the rod.
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